
1

TotalView Workshop

SARA 2010

Nikolay Piskun
Director of Continuing Engineering

Royd Lüdtke
 Application Engineer

Workshop Agenda
 9:45 Welcome & Reception with coffee

 10.00 Introduction to Rogue Wave and TotalView

 10.45 Head on Labs I

 Debugger Basics

 Viewing, Examining, Watching and Editing

 Examining and Controlling a Parallel Application

 12.15 Lunch Break

 13.00 Advanced debugging topics

 14.15 Advanced Labs

 Exploring Heap Memory in MPI applications

 Batch Mode Debugging with TVScript

 Reverse Debugging with ReplayEngine

 16.15 Debugging user code on user machines (optional)

 17.00 The End

33

Introduction to Totalview Tech Products

• Introduction

• Totalview Basics

• Parallel Debugging

4

What is TotalView?

• Wide compiler & platform
support

• C, C++, Fortran 77 & 90, UPC

• Unix, Linux, OS X

• Handles Concurrency
• Multi-threaded Debugging

• Parallel Debugging
• MPI, PVM, Others

• Remote and Client/Server Debugging

• Integrated Memory Debugging

• Reverse Debugging available
• ReplayEngine add on

• Supports a Variety of Usage Models
• Powerful and Easy GUI

• Visualization

• CLI for Scripting

• Long Distance Remote Debugging

• Unattended Batch Debugging

A comprehensive debugging solution for demanding parallel and

multi-core applications

55
Start a New Process

Starting TotalView

Attach to an Existing ProcessOpen a Core File

66

Process Control & Navigation

77

• State of all processes

being debugged

• Process and Thread

status

• Instant navigation access

• Sort and aggregate by

status

Root Window

Status Info

•T = stopped

•B = Breakpoint

•E = Error

•W = Watchpoint

•R = Running

•M = Mixed

•H = Held

Interface Concepts

88

Toolbar

Stack Frame Pane

Source Pane

Tabbed Area

Stack Trace Pane

Process Window Overview

Provides detailed

state of one process,

or a single thread

within a process

A single point of

control for the

process and other

related processes

99

Stepping Commands

Based on

PC location

10

Finding Functions, Variables,
and Source Files

1111

Breakpoints

Barrier Points

Conditional Breakpoints

Evaluation Points

Watchpoints

Action Points

1212

Watchpoints

Watchpoints are not set on a

variable. You you need to be

aware of the variable scope.

Watchpoints can be conditional or

unconditional

Uses Hardware Watchpoints

with various limitations based

on architecture

Watchpoints are set on a fixed memory region

When the contents of watched memory

change, the watchpoint is triggered

and TotalView stops the program.

Use Tools > Watchpoint from a Variable Window

or

From source pane with contextual menu

1313

Using Set PC to resume
execution at an arbitrary point

1414

 Viewing and Editing Data

1515

Expression List Window

• Reorder, delete, add
• Sort the expressions
• Edit expressions in place
• Dive to get more info

• Updated automatically
• Expression-based
• Simple values/expressions
• View just the values you want to monitor

Add to the expression list using contextual menu with right-click on a variable,

or by typing an expression directly in the window

1616

Viewing Arrays

Data Arrays

Structure Arrays

1717

Slicing Arrays

Slice notation is [start:end:stride]

1818

Filtering Arrays

1919

Looking at Variables across Processes

• TotalView allows you to look at the

value of a variable in all MPI

processes

• Right Click on the variable
• Select the View > View Across

• TotalView creates an array
indexed by process

• You can filter and visualize
• Use for viewing distributed arrays

as well.
• You can also View Across Threads

2020

Parallel Debugging

21

In the Parallel tab, select:

your MPI preference, number of tasks, and number of nodes.

TotalView Startup with MPI
TVT Launch

… then add any additional starter arguments

2222

Call Graph

• Quick view of

program state

• Each call stack is a path

• Functions are nodes

• Calls are edges

• Labled with the MPI

rank

• Construct process

groups

• Look for outliers

Dive on a node in the call graph to create a Call Graph group.

2323

Message Queue Graph

• Hangs &
Deadlocks

• Pending
Messages
• Receives

• Sends

• Unexpected

• Inspect
• Individual

entries

• Patterns

Lab time

1. Debugger Basics

2. Viewing, Examining, Watching and Editing

3. Examining and Controlling a Parallel Application

2525

 Advanced Debugging

• Memory Debugging

• Reverse Debugging

• Batch Debugging

2626

Memory Debugging

2727

What is a Memory Bug?

A Memory Bug is a mistake in the

management of heap memory

Failure to check for error conditions

Leaking: Failure to free memory

Dangling references: Failure to clear pointers

Memory Corruption

Writing to memory not allocated

Over running array bounds

What is MemoryScape?

What is
MemoryScape?

Streamlined
Lightweight
Intuitive
Collaborative
Memory Debugging

Features
Shows

Memory errors
Memory status
Memory leaks
Buffer overflows

MPI memory debugging
Remote memory debugging

– Tech
• Low overhead
• No Instrumentation

— Interface
● Inductive
● Collaboration
● Multi-process

Simple to use, intuitive memory debugging

2929

MemoryScape Features

Automatically detect allocation problems

View the heap

Leak detection

Block painting

Memory Hoarding

Dangling pointer detection

Deallocation/reallocation notification

Memory Corruption Detection

Guard Blocks

Red Zones

Memory Comparisons between processes

Collaboration features

• Run the application and see if memory events are
detected

• View memory usage across the MPI job
• Compare memory footprint of the processes

• Are there any outliers? Are they expected?

• Gather heap information in all processes of the MPI job
• Select and examine individually

• Look at the allocation pattern.
Does it make sense?

• Look for leaks

• Compare with the 'diff' mechanism
• Are there any major differences?

Are they expected?

Strategies for Memory Debugging in Parallel

3131

Memory Debugging at

Block level

Leak Detection
Bound Overwrites

Leak Detection

MemoryScape Leak
Detection

Based on Conservative
Garbage Collection

Can be performed at any
point in runtime

Helps localize leaks in
time

Multiple Reports

Backtrace Report

Source Code Structure

Graphically Memory
Location

Array Bounds Violations

Heap Guard Blocks
Before and/or After
All Allocations or
just a few
Variable Size
Check at Any Time
Reports

By Memory
Address
Only Corrupted

RedZones catch buffer overflows

Allocates a “protected page”
adjacent to selected heap allocations

Before or after allocated block

Writes into this space trigger events
Event occurs as the write is happening

Pages have a fixed size
If there are many heap allocations this
can potential have a large memory
usage overhead

Ways to manage RedZones memory
overhead

Turn RedZones on and off manually

Specify (by size) what allocations you
want to have RedZones on

3535

Memory Debugging

Memory Reports and Analysis

36

Memory Reports

Multiple Reports
Memory Statistics
Interactive Graphical Display
Source Code Display
Backtrace Display

Allow the user to

Monitor Program Memory Usage
Discover Allocation Layout
Look for Inefficient Allocation
Look for Memory Leaks

3737

Reverse Debugging

Replay Engine – The right way to debug

Step forward over functions

Step forward into functions

Advance forward out of current
Function, after the call

Advance forward to selected line

Step backward over functions

Step backward into functions

Advance backward out of current
Function, to before the call

Advance backward to selected line

Advance forward to “live” session

Run forward Run backward

3838

 Replay Engine

• Captures execution history
• Records all external input to
program

• Records internal sources of
non-determinism

• Replays execution history
• Examine any part of the
execution history

• Step back as easily as forward
• Jump to points of interest

• An add-on product to TotalView
• Support for

• Linux/x86
• Linux x86- 64

39

TotalView Debugger for CUDA

Starting TotalView

You can debug the CUDA host code using the

normal TotalView commands and procedures40

When a new kernel is loaded

you get the option of setting

breakpoints

Debugging CUDA

41

CUDA GPU threads
have a negative
TotalView thread ID

Select a line number
in a box to plant a
breakpoint

GPU focus thread selector for
changing the block (x,y) and thread
(x,y,z) indexes of the CUDA thread

Block (x,y)

Thread (x,y,z)

CUDA host threads
 have a positive
TotalView thread ID

Running to a Breakpoint in the GPU code

42

GPU focus thread
logical coordinates

PC arrow for
the warp

Parameter,
register, local and
shared variables

CUDA grid and block
dimensions,
lanes/warp,
warps/SM, SMs, etc.

Stack backtrace
and inlined
functions

Dive on a
variable name
to open a
variable
window

Stack backtrace and inlined functionsDive on a variable name to open a variable windowDive on a variable name to open a variable window

Stepping GPU Code

single-step operation advances all of the GPU

hardware threads in the same warp

To advance the execution of more than one warp,

you may either:

set a breakpoint and continue the process, or

select a line number in the source pane and select “Run To”.

43

GPU Variables and Data Display

44

Address 0x10 is an offset
within parameter storage

“@parameter” type qualifier
indicates that variable “A” is
in parameter storage

“elements” is a pointer to a
float in global storage

Pointer value 0x110000 is an
offset within global storage

Labs Part II

 4. Exploring Heap Memory in MPI applications

 5. Reverse Debugging with ReplayEngine

 6. Batch Mode Debugging with TVScript

4646

TotalView Customer Support

support@roguewave.com

4747

Thanks!

QUESTIONS?

www.roguewave.com

www.totalviewtech.com

	TotalView Workshop SARA 2010
	Workshop Agenda
	Introduction to Totalview Tech Products
	What is TotalView?
	Starting TotalView
	Slide 6
	Slide 7
	Slide 8
	Stepping Commands
	Finding Functions, Variables, and Source Files
	Action Points
	Watchpoints
	Using Set PC to resume execution at an arbitrary point
	Slide 14
	Expression List Window
	Viewing Arrays
	Slicing Arrays
	Filtering Arrays
	Slide 19
	Slide 20
	Slide 21
	Call Graph
	Message Queue Graph
	Lab time
	Advanced Debugging
	Memory Debugging
	What is a Memory Bug?
	What is MemoryScape?
	MemoryScape Features
	Strategies for Memory Debugging in Parallel
	Memory Debugging at Block level _________________ Leak Detection Bound Overwrites
	Leak Detection
	Array Bounds Violations
	RedZones catch buffer overflows
	Memory Debugging _________________ Memory Reports and Analysis
	Memory Reports
	Reverse Debugging
	Slide 38
	TotalView Debugger for CUDA
	Slide 40
	Debugging CUDA
	Running to a Breakpoint in the GPU code
	Stepping GPU Code
	GPU Variables and Data Display
	Labs Part II
	TotalView Customer Support
	Thanks!

