
Answers

Exercise 1: Checking variable values

In the debugging example we had completed examining the values of array2 computed by our
function squareArray() but had found no errors in this function. In the solution illustrated below, we
complete our debugging of variablePrinting.c simply by examining variable values within the
remainder of this program.

If we look back at our lesson example, we can see from the printout of our code that, following the
call to squareArray(), our program computes the difference between the element values in the two
arrays, array2 and array1,

del[indx] = array2[indx] - array1[indx] , for indx = 0, 1, . . . , (nelem – 1)

beginning at the for() loop on line 41.

If array1 has elements { a1k } and array2 has the elements { a2k} = { (a1k)2 } then { delk } = { 0 }
only if { (a1k)2} = { a1k}, which tells us that { a1k } = { 1 }, for k = 0, 1, . . . , (nelem – 1). But we
can see from our output that not a single one of the elements of array1 has the value 1. Therefore,
we must have a coding error in our program.

To debug this next section of code, we step through this for() loop and examine the values of each
variable on both the left- and right-hand sides of our expression for del[indx] to see if these values
look correct for each value of indx in the this loop. We print out the values of indx, array2, array1,
and del, using the GDB 'display' command.

(gdb) n
75 }
(gdb) n
main () at variablePrinting.c:41
41 for (indx = 0; indx < nelem; indx++)
(gdb) s
43 del[indx] = array2[indx] - array1[indx];
(gdb) disp indx
3: indx = 0
(gdb) disp array2[indx]
4: array2[indx] = 4
(gdb) disp array1[indx]
5: array1[indx] = 4
(gdb) disp del[indx]
6: del[indx] = 0
(gdb) s
41 for (indx = 0; indx < nelem; indx++)
6: del[indx] = 0
5: array1[indx] = 4
4: array2[indx] = 4
3: indx = 0
(gdb) s
43 del[indx] = array2[indx] - array1[indx];
6: del[indx] = 0
5: array1[indx] = 9
4: array2[indx] = 9
3: indx = 1

Clearly, the values for array1 do not look correct at all. When we debugged our function in the
lesson example, we found that the values of array2 passed to the function squareArray() were
correct and that the values of array2 returned from this function were also correct, viz., { a2k } =

{ (a1k)2 }. That is, we found that the value of each element in array2 was to equal the square of the
values of the corresponding element in array1. But as we see from the above printout of our
variables, the elements of array1 and array2 are equal, { a2k } = { a1k }. Somehow the values of
the elements in array1 have been squared in addition to the elements in array2.

So how could this have happened? The array, array1, was never passed to the function
squareArray(); only array2 was passed in line 38 of our code. If we think about it a bit, this sounds
very much like a pointer error. If for some reason array2 and array1 are pointing to the same
location in memory and the value of one of the elements of array2 is modified, then the value of the
corresponding element in array1 will equal the modified value in array2. To confirm our suspicion,
we compare the memory address of both array1 and array2. If we look back at the example in this
lesson, when we first stepped into our function squareArray() from line 38, GDB gave us the
address of when it was passed to this function,

(gdb) s
squareArray (nelem_in_array=12, array=0x80498d8) at variablePrinting.c:70
70 for (indx = 0; indx < nelem_in_array; indx++)
(gdb) s
72 array[indx] *= array[indx];

If we print out the address pointed to by array1 and compare it with the address to which the
pointer array2 was pointing when it was passed to squareArray(), we find that the two addresses are
identical.

(gdb) disp array1
1: array1 = (int *) 0x80498d8

If we want, we can confirm this by printing out the address to which array2 is pointing in the
expression for del[indx] on line 43 of our code,

(gdb) disp array2
2: array2 = (int *) 0x80498d8
(gdb)undisp 1
(gdb)undisp 2

As we can see, this is the same address as that passed to squareArray() on line 38.

The question is: How can these two arrays have the same memory address when the memory for
these arrays were allocated separately on lines 17 and 18 of our code?

16 /* Allocate memory for each array */
17 array1 = (int *)malloc(nelem*sizeof(int));
18 array2 = (int *)malloc(nelem*sizeof(int));
19 del = (int *)malloc(nelem*sizeof(int));
20

Because the memory for array1 and array2 were allocated separately, they should have different
addresses. We can confirm this by setting a new breakpoint at line 20 and printing out the values of
array1 and array2 immediately after this memory allocation is made,

(gdb)clear 38
Deleted breakpoint 1
(gdb) b 20
Breakpoint 2 at 0x80483e9: file variablePrinting.c, line 20.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: variablePrinting

Breakpoint 2, main () at variablePrinting.c:22

22 initArray(nelem, array1);
(gdb) p array1
$7 = (int *) 0x80498d8
(gdb) p array2
$8 = (int *) 0x8049910
(gdb)

This confirms that, initially, the addresses of the two arrays are not the same. Since the address of
array1 is exactly the same here as in the computation of del[indx] on line 43, but the address of
array2 does change then the error in our code must be modifying the address of array2. To find out
exactly where in our code the address of array2 changes, we move down the code line-by-line,
starting at line 20, examining the value of array2.

(gdb) n
24 for (indx = 0; indx < nelem; indx++)
(gdb) disp array2
1: array2 = (int *) 0x8049910
(gdb) s
26 array1[indx] = indx + 2;
1: array2 = (int *) 0x8049910
(gdb) s
24 for (indx = 0; indx < nelem; indx++)
1: array2 = (int *) 0x8049910
(gdb) s
26 array1[indx] = indx + 2;
1: array2 = (int *) 0x8049910
(gdb) s
24 for (indx = 0; indx < nelem; indx++)
1: array2 = (int *) 0x8049910

. . .

. . .

30 printf("\n");
1: array2 = (int *) 0x8049910
(gdb) s

31 printf(" array1 = ");
1: array2 = (int *) 0x8049910
(gdb) s
32 printArray(nelem, array1);
1: array2 = (int *) 0x8049910
(gdb) s
printArray (nelem_in_array=12, array=0x80498d8) at variablePrinting.c:79
79 printf("[");

. . .

. . .

85 printf("]\n\n");
(gdb) s
 array1 = [2 3 4 5 6 7 8 9 10 11 12 13]

86 }
(gdb) s
main () at variablePrinting.c:35
35 array2 = array1;
1: array2 = (int *) 0x8049910
(gdb) s
38 squareArray(nelem, array2);
1: array2 = (int *) 0x80498d8

(gdb) l

What we find is that the address of array2 changes after line 35, just before array2 is passed to the
function squareArray(). If we look carefully at our code, the reason is rather obvious. When we
wrote the code to copy array1 to array2 on line 35, our intent was to equate the corresponding
elements in the two arrays, array1 and array2. The code on line 35 does exactly this, but it does it
by pointing the first element in array2 to the address of the first element in array1. That is, writing

array2 = array1

is equivalent to writing

&array2[0] = &array1[0]

And, since the elements in each array are contiguous, then this is also equivalent to writing

&array2[k] = &array1[k] , for k = 0, 1, . . . , (nelem – 1) .

So, we now have two pointers, array1 and array2, pointing to the same data (the data at
0x80498d8). Therefore, when the value of the data element at 0x80498d8 is modified by passing to
the function squareArray(), both arrays will now point to the same modified data at 0x80498d8.
Consequently, when the elements of array2 are squared through the call

squareArray(nelem, array2)

on line 38, the elements of array1 will also be squared and

del[k] = array2[k] – array1[k] = 0 , for k = 0, 1, . . . , (nelem
– 1)

What we actually meant to do on line 35 is not set the addresses of the two arrays equal,

array2 = array1 ,

but, instead, to set the element values of the two arrays equal,

array2[k] = array1[k] , for k = 0, 1, . . . , (nelem – 1)

Therefore, to correct our code, we need to replace the statement on line 35 with the following code,

for (indx = 0; index < nelem; indx++)
{
 array2[k] = array1[k]
}

When we make this correction and then recompile and rerun our code, we obtain the following
correct output.

$ gcc -g -o variablePrinting variablePrinting.c

$./variablePrinting

 array1 = [2 3 4 5 6 7 8 9 10 11 12 13]

The difference in the elements of array2 and array1 are:

del = [2 6 12 20 30 42 56 72 90 110 132 156]

(b. It is possible to write multiple elements of dynamically-allocated arrays using the binary @
operator. To print the first ten elements, use 'print array1[0]@10'. Static arrays can be printed simply
as 'print arraystatic'.)

(c. glibc gives a stacktrace at the moment of the error, but only with memory references, not source
lines. The top few stack frames are routines in the libc library, which are not very useful. The first
stack frame pointer to our application can be used to locate the error using addr2line. This gives line
51, which frees the del-array. Although the double free happens on line 50, according to gdb from
the core-dump, this already gives a good impression)

Exercise 2: arrays
$ gcc -g -o array array.c
$ gdb -tui array

a. Now we run the code line-by-line up to the beginning of the summation loop and then stop. To do
this, we set a breakpoint at line 19 using the 'break' command:

(gdb) break 19
Breakpoint 1 at 0x10778: file array.c, line 19.

Then we type the 'run' command to execute the program to the point that we just entered:

(gdb) run
Starting program: /nfs/homea/dje/WebCT/debug/array
Breakpoint 1, main (argc=1, argv=0xffbefb54) at array.c:19
19 for(i=0;i<(N-1);++i) {

b. To do this, use the 'print' debugger command, which shows the value of a variable.

(gdb) print tock[2]
$1 = 1

(gdb) print tock[7]
$2 = 4
(gdb)

c. Use 'disp evensum'

d. After 1 iteration we see that evensum is much higher than expected so we now suspect that the
value of tock[0] is not correct. Using the 'print' command to check the value confirms that it is
indeed too high:

(gdb) print tock[0]
$4 = 224676

We have found the problem: the array element tock[0] was not initialized correctly. In fact, by
looking at the initialization loop you can see that it was not initialized at all. The array index was set
to start at 1 (like in Fortran) and not 0 (like in C). Therefore, the array element tock[0] contained a
random, and incorrect, value rather than zero as was intended.

e. simply 'print tock' in this case.

Exercise 3: learning valgrind

a.

$ valgrind ./variablePrinting
==30658== Memcheck, a memory error detector
==30658== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==30658== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==30658== Command: ./variablePrinting
==30658==

array1 = [2 3 4 5 6 7 8 9 10 11]

The difference in the elements of array2 and array1 are: [0 0 0 0 0 0 0
0 0 0]

==30658== Invalid free() / delete / delete[]
==30658== at 0x40248B6: free (vg_replace_malloc.c:325)
==30658== by 0x80485E9: main (variablePrinting.c:50)
==30658== Address 0x4187028 is 0 bytes inside a block of size 40 free'd
==30658== at 0x40248B6: free (vg_replace_malloc.c:325)
==30658== by 0x80485DD: main (variablePrinting.c:49)
==30658==
==30658==
==30658== HEAP SUMMARY:
==30658== in use at exit: 40 bytes in 1 blocks
==30658== total heap usage: 3 allocs, 3 frees, 120 bytes allocated
==30658==
==30658== LEAK SUMMARY:
==30658== definitely lost: 40 bytes in 1 blocks
==30658== indirectly lost: 0 bytes in 0 blocks
==30658== possibly lost: 0 bytes in 0 blocks
==30658== still reachable: 0 bytes in 0 blocks
==30658== suppressed: 0 bytes in 0 blocks
==30658== Rerun with --leak-check=full to see details of leaked memory
==30658==
==30658== For counts of detected and suppressed errors, rerun with: -v
==30658== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 16 from 11)

It shows an invalid free at line 50 of our program. The memory is already freed in line 49.
Furthermore, valgrind shows 40 bytes that are definitely lost, but we need to rerun valgrind to see
the details:

$ valgrind --leak-check=full ./variablePrinting
...
==30661== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==30661== at 0x4024C9C: malloc (vg_replace_malloc.c:195)
==30661== by 0x80484B7: main (variablePrinting.c:18)
...

which shows that the memory allocated for array2 is lost. This indicates that the pointer to array2
was reset after the allocation, which we found out to happen at line 34. So, valgrind detects the
same problems as our manual debugging in the first exercise.

c. valgrind observes and detects uninitialized values, also if these are copied or used in other
variables, but it doesn't complain. A complaint is issued only when your program attempts to make
use of uninitialised data in a way that might affect your program's externally-visible behaviour. That
is in this case the printing of the variable evensum. Valgrind detects the use of the same
uninitialized variable at several locations in the printing routine and each time it prints a warning.
The amount of warnings is therefore not directly related to the amount of errors in your code. The
option --track-origins=yes indicates that the uninitialized values come from the array tock, which
again agrees with the conclusion in the second exercise after manual debugging.

Exercise 4: Dynamic summation

The input file only has 25 values in it, but the array tock can hold 50 integers. So after the array
values are input in the while loop, what values are in the last half of tock? In C, arrays are not
intialized to anything at declaration. Therefore, if only the first half of tock is filled with values, the
last half contains whatever happened to be in those memory locations, which is junk. So when the

summation is done over all 50 elements, 25 unwanted integers are addded to the sum (and some of
these junk integers can be quite large). That explains why the incorrect sum is so large.

There are many ways to fix this problem. A rather simple approach is to initialize all 50 elements of
tock directly to zero:

 int tock[N]={0}; /* HERE IS WHERE THE ONLY CHANGE IS MADE */

Therefore, only zeros from the last 25 elements are added to the sum, which have no effect. Another
approach is to add another loop variable j for the summation loop that sums the indices 0..i-1. This
approach is implemented in the solution code.

Exercise 5: Fortran I/O

a. the command should be: OPEN(UNIT=10,FILE="sectionsCT.txt",status='OLD').
Without this option, a zero-sized file is generated if a file is opened that does not exist. When the
program then tries to read from the file, it gives a confusing message about being at the end of the
file.

b. The following table shows the expected and actual results obtained:
 Expected Actual
Id 100103 100103
Name “Rufenacht ” “ Rufenacht ”
Country “SWZ” “SWZ”
Rating 2493 24
Title “GM” “93”
Experience 254 0
when printing strings, it is good to print special characters before and after the input, which
explicitly show where the string begins and ends, e.g. print*, 'Name: *',name,'*'

c. READ(10,FMT='(I6,TR2,A14,A3,TR2,I4,TR1,A2,TR1,I3)')test(I)

d. there are still problems :
$ ls -l
total 96
-rw-r----- 1 ian aef 348 Jun 03 15:24 SectionsCT.txt
-rwxr-x--- 1 ian aef 11174 Jun 03 16:41 badcode*
-rw-r----- 1 ian aef 1482 Jun 03 16:41 bugs.f
-rw-r----- 1 ian aef 0 Jun 03 16:41 final.data
-rw-r----- 1 ian aef 216 Jun 03 16:41 fort.22
-rw-r----- 1 ian aef 396 Jun 03 16:41 out.data

The output file "final.data" is a zero byte file and there is an unexpected file "fort.22". This file
contains the information expected to be written to "final.data". The suffix, ".22" is a hint that there
is a problem with the unit, in this case unit 22. Looking at lines 41 and 49:

Line 41: OPEN(UNIT=21,FILE="final.data",STATUS='new')
Line 49: WRITE(22,FMT='(A2,A,A16,I3)')test(I)%title," ",test(I)%name,

we find another error — unit 21 is being opened, but the write statement is using unit 22.

Exercise 6: argument and type checking

The solutions can be found in the 'solution' directories.

Exercise 7: C++ pointer arithmetic

• addr2line: with the address you'll see that the error occurs at or just before the last line,
when freeing newArray. It doesn't give enough information to fix the code straightaway.
When compiling with optimization, addr2line gives an even less accurate answer.

• valgrind: it finds the invalid use of bytes after the allocated space for newArray when it is
printed and notices that it tries to free an address that is 32 bytes into a block of 40 allocated
bytes.

• gdb

• ElectricFence: it stops where newArray is printed, since it tries to read bytes that were not
allocated.

• totalview

Exercise 8: real numbers

a. We want to examine the value of x2, which we have seen to be incorrect the first time through the
loop. First, set a breakpoint at line 20, after x2 has been computed, and run the code to that point.

(gdb) b 20
Starting program: /gpfs/h06/donners/HPCEuropa2/src/trapezoid/trapezoid
Breakpoint 1 at 0x100009a4: file trapezoid.f90, line 20.

(gdb) run
 i x f(x) int(f(x))
 1 0.00 1.00 0.00

Breakpoint 1, trapezoid () at trapezoid.f90:20
20 do i = 2, n
(gdb)

The expected value of x2 is 0.1*pi=0.31. Examine the actual value:

(gdb) p x2
$1 = 5.73831721e-42

Something is clearly incorrect here. Print the values used to calculate x2:

(gdb) print i
$2 = 2
(gdb) print nm
$3 = 10
(gdb) print pi
$4 = 3.14159274

All these numbers are correct. Examining the source line where x2 is computed,

(gdb) l 19
…
 19 x2 = ((i-1)/nm)*pi
…

(gdb)

shows the problem. All the variables on the right-hand side have the correct values, but the resulting
calculation is incorrect. This leads us to suspect some kind of type mismatch (you can check the
type of variables with the 'ptype' command), and we indeed see that we are performing integer
arithmetic rather than the required floating-point arithmetic. There is an additional caveat here:
Some debuggers will not necessarily perform the same type conversions as the compiler. You must
exercise caution when computing expressions within the debugger, since the debugger may not
handle variable typing in the same way as the source code.

b. you can use the GNU compiler flag -Wconversion and see the error immediately. It is probably
best to add this flag by default to your code.

Exercise 9: dynamic memory

a) No, neither valgrind or Electric Fence find any problem. Apparently, the Intel runtime
environment sees that the allocatable array is not yet allocated and treats it as zero-sized. Array
assignments only copy as many elements as available in the destination in the Fortran runtime. If
the array is allocated but too small, even array bound checking does not find this problem.

b) As long as the array is not allocated, the optional array bound checking (-C) stops the program
and warns you that the array is not yet allocated.

c) Test your application with different compilers and possibly on different platforms.

	Answers
	Exercise 1: Checking variable values
	Exercise 2: arrays
	Exercise 3: learning valgrind
	Exercise 4: Dynamic summation
	Exercise 5: Fortran I/O
	Exercise 6: argument and type checking
	Exercise 7: C++ pointer arithmetic
	Exercise 8: real numbers
	Exercise 9: dynamic memory

